Varicocele treatment: A 2-centers comparison between non microsurgical open correction, laparoscopic approach and retrograde percutaneous sclerotization on 463 cases

Giangiacomo Ollandini 1, Giovanni Liguori 1, Stanislav Ziaran 2, Tomáš Málek 2, Giorgio Mazzon 1, Bernardino de Concilio 1, Stefano Bucci 1, Sara Benvenuto 1, Emanuele Belgrano 1, Carlo Trombetta 1

1 Urologic Unit, Cattinara Hospital, University of Trieste, Trieste, Italy; 2 Urology clinic, University hospital in Bratislava, Comenius University, Bratislava, Slovakia.

Summary

Objectives: To determine whether there are differences in sperm parameters improvement after different varicocele correction techniques. To determine the role of age in sperm parameters improvement.

Methods: 2 different European centers collected pre- and postoperative sperm parameters of patients undergoing varicocele correction. Among 463 evaluated patients, 367 were included. Patients were divided in procedure-related and age-related groups. Ivanissevich inguinal open surgical procedure (OS), lymphatic-sparing laparoscopic approach (LSL) and retrograde percutaneous transfemoral sclerotization (RPS) were performed. As outcome measurements sperm count (millions/mL, SC) and percentage of mobile sperms were analyzed. Univariate and multivariate regression between the defined groups; bivariate regression analysis between age and sperm count and motility.

Results: Number of patients: OS 78; LSL 85; RPS 204. Mean age 30.2 (SD 6.83); postoperative SC increased from 18.2 to 30.1 (CI 95% 27.3-32.9; p < 0.001); motility from 25.6 to 32.56% (30.9-34.2; p < 0.001). OS: SC varied from 16.9 to 18.2 (p < 0.001); sperm motility from 29% to 33% (p < 0.001). LSL: SC from 15.5 to 17.2 (p < 0.001); motility from 27 to 31% (p < 0.001). RPS: SC from 18.9 to 36.2 (p < 0.001); motility from 24% to 32% (p < 0.001). Univariate and multivariate analysis confirmed the significant difference of SC variation in RPS, compared to the other groups (p < 0.001). No significance between LSL and OS (p = 0.826). No significant differences regarding motility (p = 0.8).

Conclusions: Varicocele correction is confirmed useful in improving sperm parameters; sclerotization technique leads to a better sperm improvement compared to other studied procedures; improvement in seminal parameters is not affected by age of the patients treated.

Key words: Andrology; Infertility; Sclerotization; Spermatozoa; Varicocele.

Submitted 18 July 2013; Accepted 31 July 2013

No conflict of interest declared

Introduction

Varicocele can affect all parameters of sperm characteristics, including sperm count, sperm motility, and morphology. Different techniques have been suggested for varicocele treatment, both surgical and non-surgical. The surgical techniques include the open surgical (inguinal, subinguinal, retroperitoneal approach), laparoscopic and microsurgical varicocelectomies. The non-surgical are represented by the radiological-assisted techniques: embolization or sclerotherapy (1, 2).

Several studies related the outcome in terms of invasiveness and costs between the different techniques used (3, 4); however a comparison of the efficacy on sperm parameters improvement of open ligation, laparoscopic approach and sclerotization is still missing.
The goal of our study was to compare the clinical outcomes in terms of sperm quality after varicocele correction using the three cited techniques. We also referred to patients’ age in order to analyze whether there are significant differences of postoperative sperm improvement related to age increment.

Material and Methods

Two different centers collected data of patients undergoing varicocele treatment from 1986 to 2011. Patients were complaining both from infertility or testicular pain. All patients underwent a complete history, physical examination in a warm room, hormonal assessment, semen analysis. Each center treated the patients with a different technique: open ligation of the spermatic vein according to Ivanissevich technique, laparoscopic approach or retrograde sclerotherapy of the spermatic vein. At least 3 months after surgery, semen analysis and physical examination have been performed: in fact Al Bakri et al. in 2012 demonstrated that there is no significant improvement in sperm parameters after 3 months from correction (6).

On a total of 463 patients, 96 have been excluded according to the following criteria: persistence of varicocele, endocrinological abnormalities, history of descended testis, bilateral varicocele, and abnormal right testis. Mean age of patients was 30.2 yr (SD 6.83); median clinical grade was 2 (IQR 1); mean sperm concentration was 18.0 millions/mL (SD 14.7) and mean sperm motility was 25.6% (SD 17.51).

Surgical procedures: the operative procedures are widely described in the literature.

In Ivanissevich open surgery inguinal approach (under general anesthesia) the exposure of the internal spermatic vessels within the inguinal canal takes place through an incision of the external oblique aponeurosis (7).

In laparoscopic ligation of spermatic veins (under general anesthesia) the patients underwent varicocelectomy by the lymphatic sparing technique. In this procedure the internal spermatic veins alone were divided. Using a microsurgical technique both the artery and the lymphatics were preserved (8).

Patients underwent retrograde percutaneous sclerotherapy of their left spermatic vein, using the right transfemoral retrograde percutaneous approach. The femoral vein is entered below the inguinal ligament using the standard Seldinger technique. Renal phlebography is carried out by injection of contrast medium under Valsalva maneuver. After superselective catheterization of the spermatic vein, a guidewire is introduced and act as a guide for a very distal catheterization, through continuous fluoroscopy. Superselective angiography shows every possible collateral circle and the possible presence of multiple spermatic veins. Sclerotherapy technique is performed by injecting a 2-4 mL of sodium tetradecyl sulfate 3% mouse. Patients are required to perform a Valsalva maneuver at least 10 seconds long during the injection. Venography is then performed again: should there be bulky veins, the operation is repeated at a higher lumbar level. After this procedure, a control venography is performed to confirm the absence of re-operators.
Table 1.
Total number of treated and excluded and rate of overall post-operative complications.

<table>
<thead>
<tr>
<th>Technique</th>
<th>N</th>
<th>Excluded</th>
<th>Recurrence (%)</th>
<th>Total</th>
<th>Included</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Surgery</td>
<td>77</td>
<td>2</td>
<td>7 (9.1%)</td>
<td>9</td>
<td>68</td>
<td>7%</td>
</tr>
<tr>
<td>Laparoscopic</td>
<td>80</td>
<td>4</td>
<td>1 (1.3%)</td>
<td>5</td>
<td>75</td>
<td>0%</td>
</tr>
<tr>
<td>Sclerotherapy</td>
<td>366</td>
<td>57</td>
<td>25 (9.3%)</td>
<td>82</td>
<td>284</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td>523</td>
<td>63</td>
<td>33</td>
<td>96</td>
<td>427</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.
Univariate ANOVA and Multivariate MANOVA analysis of variance.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Age (SD)</th>
<th>Sperm Concentration (95% CI)</th>
<th>Motility (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post*</td>
<td>Pre</td>
</tr>
<tr>
<td>Open Surgery</td>
<td>25.9 (5.2)</td>
<td>18.9 (17-20.1)</td>
<td>36.2 (32.8-40.7)</td>
</tr>
<tr>
<td>Laparoscopy</td>
<td>26 (5.6)</td>
<td>15.5 (13.7-17.1)</td>
<td>17.2 (15.5-18.9)</td>
</tr>
<tr>
<td>Sclerotherapy</td>
<td>23.1 (6.85)</td>
<td>16.9 (13.4-20)</td>
<td>18.2 (15.0-21.5)</td>
</tr>
<tr>
<td>p-value</td>
<td>Univariate</td>
<td>0.2</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Multiple</td>
<td>0.18</td>
<td>0.0001</td>
<td>0.18</td>
</tr>
<tr>
<td>Age decades</td>
<td>Group 1</td>
<td>0.20</td>
<td>18.8 (13.7-23.9)</td>
</tr>
<tr>
<td></td>
<td>Group 2</td>
<td>0.30</td>
<td>21.30</td>
</tr>
<tr>
<td></td>
<td>Group 3</td>
<td>0.40</td>
<td>31.40</td>
</tr>
<tr>
<td></td>
<td>Group 4</td>
<td>> 41</td>
<td>42.5 (17.1-27.9)</td>
</tr>
<tr>
<td>p-value</td>
<td>Univariate</td>
<td>0.85</td>
<td>0.32</td>
</tr>
<tr>
<td>Multiple</td>
<td>0.97</td>
<td>0.30</td>
<td>0.13</td>
</tr>
</tbody>
</table>

*p-value < 0.001 for each of the parameters within the groups.

Figure 1.
Mean variation of sperm concentration and motility between the three procedure-related groups.

Discussion
In our study we found:
- As already known from the literature, varicocele correction is confirmed as useful in improving sperm parameters.
treatment in infertile men, and according to their meta-analysis there was no clear evidence of indication in varicocele correction to improve fertility (12). This review, though, have been debated by a contrary opinion: the Authors (Ficarra et al.) analyzed the methodology of the study and concluded that it was weak and poorly significant, as they included patients with subclinical varicoceles and normal semen parameters (13). More recently a randomized, controlled trial by Abdel-eguid et al. (14) concluded that there is a statistically significant improvement in semen quality after microsurgical correction of varicocele and a higher pregnancy rate, comparing the results with the control arm. Therefore the main focus of our study was not to demonstrate the outcome in terms of fertility and pregnancy rate, but to compare the efficacy in sperm improvement between the different used techniques.

In 1998 Barbalias et al. carried out a randomized clinical trial comparing a total of 88 patients who underwent varicocele correction either by retroperitoneal, inguinal, subinguinal or percutaneous approach. They analyzed pre and postoperative sperm parameters concluding that microsurgical subinguinal technique had a greater performance (15). A newer study in 2010 confirmed that microsurgical approach obtains better results compared to the standard inguinal approach (16). However microsurgical treatment of varicocele needs a greater amount of time and instruments than the other techniques. Several studies compared the open surgery technique to sclerotization procedure, with contradictory results (12, 13, 17, 18); though one of the main outcomes of those studies was the pregnancy rate, this parameter seems to be affected by too many confounding factors to be eligible as a main outcome. Many other studies, moreover, focused on the costs of the treatments, and the time to recovery: operative costs are shown to be similar for all the studied procedures, but the time to recovery is significantly less for patients treated by sclerotization technique.

Therefore Bechara et al. concluded that the radiological-assisted procedure has a cost-benefit compared to surgical treatment (19). The rate of technical failure of sclerotization procedure is described to vary from 5% to 20%, due to the anatomical abnormalities, venospasm or technical difficulties (13, 17, 19).

In our experience the intervention is converted during the same session to an anterograde sclerotization, according to Tauber technique. This possibility permits to obtain a 100% rate of technical success. Our data clearly show that the sclerotization technique leads to a better improvement of sperm concentration compared to laparoscopic and Ivanissevich techniques. Moreover, these appear to obtain a similar outcome both regarding sperm density improvement and sperm motility improvement.

The hypothesis regarding the better results of sclerotization techniques are probably related to:
- Better anatomical view and complete repair of varicocele
- Complete maintenance of lymphatic vascularization
- No arterial injuries.

- Sclerotization technique leads to a better sperm improvement compared to other studied procedures
- Improvement in seminal parameters is not affected by age of the patients treated.

The usefulness of varicocele repair remains a highly debated topic. The 2009 updated Cochrane review by Evers and Collins discussed the indication to varicocele
Sclerization differs from the surgical approaches because of the venography that is repeated during the whole procedure, in order to guide step by step the intervention. This allows to obtain a clear imaging of the venous vascularization, and to close selectively every single vessel that is implicated in varicocele formation. In fact it is commonly known, that 19% of patients with varicocele have an aberrant anatomical situation (20).

This situation cannot be completely discovered by laparoscopic and surgical approach, and will be probably not treated completely, even if postoperatively there is no sign of clinically detectable persistence. The pathogenetic factors involving poor sperm quality on varicocele patients, if not completely corrected, could in fact continue their damage of the testis, that have been showed in several studies (21, 22).

Moreover, the risk of injuries to the testicular arteries is significantly higher in patients undergoing surgical procedures than in patients undergoing sclerization, due to the procedure itself (23), even if the role of artery injury in sperm parameter's outcome is not certainly significant (23, 24).

Finally, the preservation of lymphatic vessels is assured with sclerization technique, while in patients undergoing surgical procedures the lymphatic damage is most likely avoided (laparoscopy) or most probably occurs (Ivanissevich). Lymphatic vessels ligation is thought to induce a significant worsening of testicular function, due to testicular edema (8).

We may assume these factors cooperate in obtaining a better result in sperm concentration improvement in patients undergoing sclerization of their varicocele instead of the other procedures. Though there is an evidence of correlation between patients’ age and sperm parameters worsening in some studies in the literature (26, 27), according to other recent studies the role of age in sperm quality improvement after varicocele correction is believed to be not significant (9, 25). In our study the only significant trend, at linear regression estimation, is the decrease of sperm motility in relation to patients’ age.

This trend is not affected by the intervention, as it remains constant after correction of varicocele, and represents the normal decrement of motility due to patient’s age.

Conclusions

Varicocele treatment leads to improvement in seminal parameter examined in 73% of the cases. Both surgical and non-surgical approaches are effective, as in each group postoperative values are significantly better than preoperative ones.

Sclerization of varicocele showed a better improvement of the postoperative sperm concentration, and is a safe and easy procedure, and should be therefore offered as a routine first line treatment to patients affected by varicocele, where the indication for treatment occurs.

Finally, even patients more than 40 years old showed a significant improvement of their sperm count and motility, and could be offered the treatment as well.

References

20. Marsman JW. The aberrantly fed varicocele: frequency, veno-

Correspondence
Giangiaco Ollandini, MD (Corresponding Author) g.ollandini@gmail.com
viale Gabriele d’Annunzio 63, 34138 Trieste (Italy)

Giovanni Liguori, MD
Giorgio Mazzon, MD
Bernardino de Concilio, MD
Stefano Bucci, MD
Sara Benvenuto, MD
Emanuele Belgrano, MD
Carlo Trombetta, MD
Urologic Unit, Cattinara Hospital, University of Trieste
Via di Fiume 447 - 34149 Trieste, Italy

Stanislav Ziaran, MD
Tomáš Malek, MD
Urology Clinic, University Hospital in Bratislava,
Comenius University, Bratislava, Slovakia

Archivio Italiano di Urologia e Andrologia 2013; 85, 3